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The Hyperspectral Imager for the Coastal Ocean (HICO) offers the coastal environ-
mental monitoring community an unprecedented opportunity to observe changes in
coastal and estuarine water quality across a range of spatial scales not feasible with
traditional field-based monitoring or existing ocean colour satellites. HICO, an Office of
Naval Research-sponsored programme, is the first space-based maritime hyperspectral
imaging instrument designed specifically for the coastal ocean. HICO has been operating
since September 2009 from the Japanese Experiment Module – Exposed Facility on the
International Space Station (ISS). The high pixel resolution (approximately 95 m at
nadir) and hyperspectral imaging capability offer a unique opportunity for characterizing
a wide range of water colour constituents that could be used to assess environmental
condition. In this study, we transform atmospherically corrected ISS/HICO hyperspectral
imagery and derive environmental response variables routinely used for evaluating the
environmental condition of coastal ecosystem resources. Using atmospherically cor-
rected HICO imagery and a comprehensive field validation programme, three regionally
specific algorithms were developed to estimate basic water-quality properties tradition-
ally measured by monitoring agencies. Results indicated that a three-band chlorophyll a
algorithm performed best (R2 = 0.62) when compared with in situ measurement data
collected 2–4 hours of HICO acquisitions. Coloured dissolved organic matter (CDOM)
(R2 = 0.93) and turbidity (R2 = 0.67) were also highly correlated. The distributions of
these water-quality indicators were mapped for four estuaries along the northwest coast
of Florida from April 2010 to May 2012. However, before the HICO sensor can be
transitioned from proof-of-concept to operational status and its data applied to benefit
decisions made by coastal managers, problems with vicarious calibration of the sensor
need to be resolved and standardized protocols are required for atmospheric correction.
Ideally, the sensor should be placed on a polar orbiting platform for greater spatial and
temporal coverage as well as for image synchronization with field validation efforts.

1. Introduction

The Clean Water Act protects waters in the USA (CWA, 1988). The objective of the CWA
is to ‘restore and maintain the chemical, physical, and biological integrity of the Nation’s
waters’. This Federal mandate authorizes states, tribes, and US territories, with guidance
and oversight from the US Environmental Protection Agency (EPA), to develop and
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implement water-quality standards to protect the resources of the Nation’s waterways.
Water-quality standards include designated uses, defined as the services that a waterbody
supports such as drinking water, aquatic life, harvestable species, and recreation. These
standards under the CWA are applicable within navigable waters of the USA and extend
seaward a distance of three miles from the coast. Therefore, a majority of research by the
EPA addresses scientific questions within state waters, estuaries, lakes, rivers, and streams
where applicable water-quality regulation could be implemented. Policymakers and envir-
onmental managers need tools enabling them to assess the sustainability of watershed
ecosystems, and the services they provide, under current and future land-use practices.

Water-quality condition has historically been assessed based on a suite of indicators
related directly to the stress of an ecosystem or can serve as an indicator of stress.
Examples are concentrations of chlorophyll a (Chl a), suspended sediment, salinity, coloured
dissolved organic matter (CDOM), and temperature. Chl a is used as a proxy for phytoplank-
ton biomass and can be an indicator of increased nutrients (Devlin, Bricker, and Painting
2011; Ferreira et al. 2011; Schaeffer et al. 2012) or a direct measure of potential harmful algal
bloom development (Stumpf et al. 2003). Suspended sediment concentrations are important
for monitoring wind-driven re-suspension events (Chen 2006), a predictive factor for patho-
gens such as E. coli (Nevers and Whitman 2005), and a valuable tracer of anthropogenic
disturbance to land (Ricker, Odhiambo, and Church). CDOM serves as a nutrient source and a
vector for heavy metals in water (Zhang et al. 2011; Heyes, Miller, and Mason 2004).
Detection from space provides a measure of river plume extent and transfer of organic carbon
(Tehrani et al. 2013), both critical to the management of coastal aquatic resources.

Measuring this indicator suite often requires field teams to spend hours on boats to
collect data from discrete locations, which ultimately will not provide complete informa-
tion on the spatial and temporal variations of environmental processes in an estuary or a
lake. Although this protocol will continue to be necessary for various reasons, water-
quality monitoring using remote-sensing technologies may provide the most practical way
to ensure that management practices, at temporal and spatial scales relevant to environ-
mental managers and the general public, are achieving sustainability.

Over the last several decades, satellite technology has allowed measurements on a
global scale, but often has poor resolution at local scales, which are more relevant to
environmental managers and the general public. Remotely sensed water-quality products
were first developed for global ocean observations. In 1978, the Coastal Zone Color
Scanner (CZCS) began measuring ocean colour parameters such as phytoplankton bio-
mass with a pixel resolution of approximately 1 × 1 km. This satellite lasted until 1982
and served as a proof-of-concept for the Sea-viewing Wide Field of view Sensor
(SeaWiFS), which became operational in 1997. This satellite also had a resolution of
1 × 1 km and provided global coverage with daily revisit cycles. In 2002, the Moderate
Resolution Imaging Spectroradiometer (MODIS) and the European Space Agency’s
Medium Resolution Imaging Spectroradiometer (MERIS) became operational with
1 × 1 km resolution providing global coverage. MODIS had daily repeat cycles whereas
MERIS had a 1–2 day revisit cycle. MERIS has also collected data at 300 × 300 m pixel
resolution whereas MODIS had several bands at 250 and 500 m resolution for use in
coastal waters. All three sensors provided important information on the global aspects of
water quality. However, the 1 km pixel resolution characteristic of all three sensors and
the Case 1 centric algorithms developed from their data have provided limited assess-
ments of near-shore Case 2 coastal waters, estuaries, and lakes. Case 1 waters are defined
as those waters in which phytoplankton are the principal constituent responsible for
variation in optical properties of the water. Case 2 waters are those waters influenced
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not only by phytoplankton but also by other substances (e.g. CDOM, inorganic suspended
sediments) (Morel and Prieur 1977; Gordon and Morel 1983).

Because of these limitations, it has been difficult to derive products from these sensors
that could be used by environmental managers or researchers to adequately address issues
associated with smaller estuaries or those waters in proximity to the land-water conti-
nuum. However, there have been some demonstrations of limited success in deriving
water-quality products in coastal and inland waters (Ladner et al. 2007; Miller and McKee
2004; Gons, Auer, and Effler 2008; Werdell et al. 2009, Witter et al. 2009).

Owing to the complex interactions between the biotic and abiotic components in
estuarine and coastal waters, approaches and methods to develop satellite-based water-
quality products are more complicated than in the adjacent open ocean. Currently, there is
no single method that can resolve water-quality products across the spatial continuum of
lakes, reservoirs, bayous, estuaries, and the near coastal environment at various temporal
scales. Furthermore, algorithms traditionally used to derive water-quality products for the
global ocean typically fail or fundamentally do not have accurate assumptions when
applied to estuarine or coastal waters. Finally, straylight contamination and bottom
reflectance typically confound the derivation of products where environmental manage-
ment needs are greatest along the land–water interface (Schaeffer et al. 2012).

The Hyperspectral Imager for the Coastal Ocean (HICO) on the International Space Station
(ISS) is the first space-based,maritimehyperspectral imaging instrumentdesignedspecifically to
measurewater-quality parameters near the land–water interface.HICO is a pushbroom, imaging
spectrometer based on the Portable Hyperspectral Imager for Low-Light Spectroscopy
(PHILLS) airborne imaging sensor. HICO was developed by the US Naval Research
Laboratory (NRL) for the Office of Naval Research (ONR) as an Innovative Naval Prototype
(Corson 2011; Corson and Davis 2011). ONR also supported the first three years of operations
including thedevelopmentandoperationof theHICOwebsiteatOregonStateUniversity (OSU).

HICO offers the environmental monitoring community an unprecedented opportunity
to observe changes in coastal and estuarine water quality across a range of spatial scales
not feasible with field-based monitoring. The 95 × 95 m (at nadir) spatial and ≤6 nm
bandwidth spectral (Lucke et al. 2011) resolution of the HICO instrument offers a unique
capability for characterizing a wide range of water colour parameters that can provide a
detailed understanding of estuarine and near-coastal environmental conditions.

In this article, we derive and test the robustness of algorithms to derive Chl a, CDOM
absorption, and turbidity from the spectral signatures of HICO images of four estuarine/
coastal systems of northern Florida taken during April 2010–May 2012 on the ISS during
ISS Expeditions 24–31.

2. Methods

2.1. Field and laboratory analysis

Field surveys were conducted in four Florida estuaries along the Florida Panhandle during
April 2010 and June 2011 to June 2012. The systems selected represented a range of
optical characteristics (e.g. high vs. low particulate loads), were of sufficient size to be
adequately resolved in remote-sensing imagery, and were close enough to the EPA Gulf
Ecology Division (GED) in Gulf Breeze, FL, to make sampling during an ISS overpass
feasible. The systems sampled were Pensacola Bay, Choctawhatchee Bay, St Andrews
Bay, and St Joseph Bay (Figures 1 and 2). Field sampling and sample analysis were
conducted in accordance with an approved Quality Assurance Plan (Schaeffer 2011).

International Journal of Remote Sensing 2929
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Three of the coastal systems sampled are characterized as shallow (~4.0 m), microtidal
(tidal range ~1.0 m) estuaries located along the northwest Florida coast. Pensacola (30° 42′N;
−87° 22′ W), Choctawhatchee (30° 40′ N; −86° 62′ W), and St Andrews (30° 16′ N; −85°
66′ W) bays are partially mixed, lagoonal estuaries bordered on the ocean side by a barrier
island system through which a tidal inlet provides coastal water exchange with the Gulf of
Mexico. On the landward side, freshwater discharge is supplied from rivers that drain adjacent
watersheds (Figure 1). St JosephBay (29° 80′N;−85° 36′W) is a slightly deeper (~8m) coastal
embayment partially isolated from the Gulf of Mexico by St Joseph Peninsula and is the only
waterbody in the eastern Gulf ofMexico not influenced by the inflow of fresh water (Figure 1).

Sampling stations were located to characterize water quality and optical properties
where HICO imagery could be acquired as well as along the major salinity gradients of
each estuary (Figure 2). A Sea-Bird 25 CTD (Sea-Bird Electronics, Bellvue, WA, USA)
was deployed to measure the vertical profiles of temperature, salinity, and depth.
Additional integrated instruments included Chl a, turbidity, and CDOM fluorometers.
Water samples were collected 0.5 m below the surface, away from boat engines, using a
2L brown Nalgene bottle for the post-cruise analysis of Chl a and coloured dissolved
organic matter absorption. All collection bottles were triple rinsed with surface water.
Samples were typically processed within 24 hours of collection.

Water samples were filtered through Whatman 47 mm GF/F filters (nominal pore
size = 0.7 µm) for chlorophyll analysis. Filters were extracted in methanol and

km

0 2000 4000

N

E

S

W

87°W 87°W

30°N

31°N

6000

Figure 1. Map of the study region in the northern Gulf of Mexico with only the main rivers
identified. Locations of sampling stations are indicated as filled black circles. Estuaries are identified
as Pensacola Bay, Choctawhatchee Bay, St Andrews Bay, and St Joseph Bay from left to right.
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fluorescence was measured with a Turner Designs (TD700) fluorometer. Associated
pigment interference from chlorophyll b and phaeopigments were minimized using a
436 nm excitation filter, 680 nm emission filter, and two neutral density reference filters
with a blue lamp (Welschmeyer 1994).

Figure 2. Location of sampling stations within each estuary. Dark circles represent stations where
HyperSAS, CTD, and water samples were collected. Open circles represent stations where only
HyperSAS and CTD data were collected. In Pensacola Bay, WQM represents the locations of water-
quality moorings that provided a time series of chlorophyll, turbidity, and CDOM data.

International Journal of Remote Sensing 2931
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CDOM absorption was determined using water filtered through Whatman 47 mm GF/
F filters (nominal pore size = 0.7 mm) into combustion glass flasks. Absorption was
measured using a 10 cm cuvette with a Shimadzu UV1700 dual-beam spectrophotometer.
Data were collected at 1 nm intervals between 200 and 750 nm. Milli-Q deionized water
was used in the reference cell. Spectra were normalized by subtracting each wavelength
from the measured value at 700 nm (Pegau et al. 2003).

Remote-sensing reflectance (Rrs, sr
−1) was derived using a hyperspectral surface acqui-

sition system (HyperSAS, Satlantic Inc., Halifax, Nova Scotia). The HyperSAS logged
spectral measurements of above-water radiance (Lt(λ)), sky radiance (Li(λ)), and down-
welling sky irradiance (Es(λ)) from 350 to 800 nm (interpolated at 1 nm intervals ).
HyperSAS radiance sensors were mounted on the port side of the pilot house roof of a
25ft boat to provide 40o nadir and zenith viewing angles (Mobley 1999). During data
acquisition, the boat was positioned so the radiance sensors were perpendicular to the Sun’s
azimuth and to avoid boat shadow and wake. The irradiance sensor was mounted above the
deck canopy for an unobstructed view of the sky. The above-water remote-sensing reflec-
tance spectra were corrected, following the surface correction algorithm of Gould, Arnone,
and Sydor (2001), using the average absorption at 412 nm and the derived spectral
scattering shape (Gould, Arnone, and Martinolich 1999). Concurrently with the
HyperSAS acquisition, an AC-s (WET-Labs, Philmoth, OR) quantified in-situ vertical
profiles of absorption (a) and beam attenuation (c) from 400 to 735 nm interpolated to
every 1 nm. Temperature and salinity corrections were applied using corresponding Seabird
CTD data (WET-Labs, 2008). The AC-s light absorption (a), attenuation (c), and derived
backscatter (b) values were averaged over the surface of the water column to secchi depth.

2.2. Autonomous underwater vehicles

Autonomous underwater vehicles (AUVs) were deployed as part of the field programme
concurrently with HICO overpasses. The AUVs were operated by the Naval Research
Laboratory Stennis Space Center Detachment (NRL/SSC) and the USEPA Atlantic
Ecology Division (AED) in Narragansett, Rhode Island.

From August 2011 to May 2012, NRL/SSC deployed a Slocum electric glider five
times along the Florida coast. The glider collected in situ data roughly following the 15–
30 m bathymetric contours just south of the Pensacola Bay. The payload provided profile
data of pressure, temperature, conductivity, backscatter (bb) at 470, 532, and 660 nm,
beam attenuation (c), chlorophyll fluorescence, and CDOM florescence.

A Hydroid, Konsberg Maritime REMUS 100 (Remote Environmental Monitoring
Unit) AUV was acoustically navigated along a predetermined transect via multiple
transponder placement. The AUV autonomously surveyed inshore areas using on-board
payload sensors, which recorded Chl a, turbidity, temperature, conductivity, and salinity
data at a depth of approximately one metre. Deployments were designed to coincide with
the offshore deployments of the NRL/SSC glider and HICO overpasses. The REMUS 100
was deployed on 19 January 2012 in Escambia Bay, on 20 January 2012 in East Bay
sections of greater Pensacola Bay, and on 25 August 2011 and 21 January 2012 in
Choctawhatchee Bay.

2.3. HICO image processing

During the course of this study, 49 images were acquired from HICO for all four estuaries
from April 2010 to May 2012. Images were processed at the EPA AED and an image
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from 28 October 2011 was processed by NRL/SSC. The highest number of images
(n = 20) was acquired from St Andrews Bay. Sixteen images were acquired from
Pensacola Bay, seven images were acquired from Choctawhatchee Bay, and six images
were acquired from St Joseph Bay. Each image was part of a scene that covered a
50 × 200 km swath per orbit. Seven images were not processed owing to excessive
cloud cover, problems with the Sun’s positional data in the header file, or problems
warping the image during geo-rectification. The images were acquired between 0800 and
1430 GMT from altitudes ranging from 344 to 421 km above the Earth.

Images from the estuaries were downloaded as radiometrically calibrated Level 1B
top-of-atmosphere (TOA) at-sensor radiances from the OSU website (http://hico.coas.
oregonstate.edu/index.shtml) (Figure 3, Step 1). The Level 1B data files also contained
information that allowed for image geometric correction. The data arrived as a single tar
file, which contained 10–12 compressed files associated with each scene including an
ASCII header file. Each image is composed of 512 cross-track pixels (samples), 87 bands

Figure 3. Processing steps used to convert HICO Level 1b radiances to remote-sensing reflec-
tances using the dark-pixel atmospheric correction scheme and export the data for the development
of water-quality algorithms.
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from 400 to 900 nm, and 2000 lines in ENVI software format and stored as binary files in
band sequential (BSQ) format. HICO images were processed using EXELIS ENVI
version 4.7. During Step 1, the data were converted to band interleaved format (BIL).
A list of acronyms and units used in the following equations is provided in Table 1.

To produce two-byte integer output during pre-Level 1B processing at OSU, the data
are multiplied by 50. Therefore, to convert the scaled integer data to geophysical units of
W/m2/sr/µm, the Level 1B data were divided by 50 (Figure 3, Step 2).

Owing to its low Earth orbit, the ISS is required to make altitude and orbital
adjustments due to atmospheric drag, which result in changing solar/viewing geometries
of the HICO sensor. These orbital adjustments could result in image pixels getting
affected by the specular reflection of light from the sea surface or Sun glint. Sun-glinted
pixels are a confounding factor in remote sensing as they may not contain any information
about water constituents and benthic features. Pixels affected by Sun glint are common in
wide-field-of–view image acquisitions from airborne and satellite missions (Hochberg,
Andrefouet, and Tyler 2003). According to Cavalli, Pignatti, and Zappitelli (2006), Sun
glint shows strong spatial variations that require individual calculation and correction for
each pixel depending on the wave state. During image processing, the method of
Goodman, Lee, and Ustin (2008) was used to independently determine the glint radiance
for each pixel in a HICO image and correct for Sun glint using the near-infrared (NIR)
signal. The major assumptions of this approach are that NIR light is strongly absorbed by
water and any signals reflected represent Sun glint reflected from the sea surface. The
amount of Sun glint in the NIR band is linearly related to the glint contribution of the
visible bands (Hochberg, Andrefouet, and Tyler 2003).

In Step 3, each pixel in a HICO image was corrected to remove the effects of Sun glint
by subtracting radiance at 750 nm from the radiance at each wavelength (Li(λ)) (Figure 3;
Goodman, Lee, and Ustin 2008; Kay, Hedley, and Lavender 2009). An offset was applied

Table 1. List of acronyms used in equations.

Acronym Units Description

λ nm Wavelength
Li W m−2sr−1μm−1 Wavelength radiance
L(640) W m−2sr−1μm−1 Radiance at 640 nm
L(750) W m−2sr−1μm−1 Radiance at 750 nm
Lt (λ) W m−2sr−1μm−1 Total at-sensor radiance
Lw (offshore) W m−2sr−1μm−1 Offshore water-leaving radiance
Lw (estuary) W m−2sr−1μm−1 Estuary water-leaving radiance
La (λ) W m−2sr−1μm−1 Aerosol radiance
T(λ) Total transmittance
ρw μW m−2sr−1μm−1 Surface reflectance
Lw(λ) μW m−2sr−1μm−1 Water-leaving radiance
F0 μW m−2sr−1μm−1 Mean solar irradiance
θs degrees Solar zenith angle
H km Altitude
Rrs( λ) sr−1 Remotely sensed reflectance
t0 Diffuse transmittance Sun to pixel
τr Rayleigh optical thickness
aph m−1 Phytoplankton absorption
aw m−1 Water absorption
Chl a measured μg l−1 Extracted Chl a concentration
Chl a predicted μg l−1 Predicted Chl a concentration
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using radiances at 640 (L(640)) and 750 (L(750)) nm to prevent negative values in the
NIR due to over-correction as the corrected radiance approaches zero at 750 nm
(Goodman, Lee, and Ustin 2008; Kay, Hedley, and Lavender 2009). The process to
correct for Sun glint is expressed as follows:

Li λð Þ ¼ Li λð Þ � L 750ð Þ þ Δ; (1)

Δ ¼ Aþ B½L 640ð Þ � L 750Þð �; (2)

where Δ is the offset, and A + B are the constants. In this approach, we used the values of
Goodman et al., which are A = 0.000019 and B = 0.1.

The HICO imagery processed at NRL/SSC was received directly from NRL/DC as
level 1B hdf files and processed with the Naval Research Laboratory’s Automated
Processing System (APS). APS is capable of processing real-time and archived
AVHRR, SeaWiFS, MODIS, MERIS, VIIRS, and HICO imagery. It is a powerful,
extendable, end-to-end system that includes sensor calibration, atmospheric correction
(with NIR correction for coastal waters), and bio-optical inversion (Martinolich and
Scardino 2011). APS incorporates, and is consistent with, the latest NASA MODIS
code (SeaDAS), which enables production of the NASA standard MODIS products
(such as chlorophyll from the OC3 algorithm; O’Reilly et al. 1998), as well as Navy-
specific products (such as diver visibility) using NRL algorithms.

2.4. Atmospheric correction

The final approach used to atmospherically correct HICO images (Step 4; Figure 3) was
determined after an evaluation of results from three processing strategies. During the
evaluation, HyperSAS spectral signatures from stations in Pensacola Bay were used as
references for comparison (matchups) with spectral outputs derived from the three atmo-
spheric correction approaches. For the NRL/APS processing, the HICO hyperspectral
band data were convolved to a reduced band set, representing the MODIS multi-spectral
bands, and processed in APS using the standard NASA atmospheric correction (Gordon
and Wang 1994) used for MODIS. This approach ensured processing consistency between
ocean colour sensors, but did not address sensor inter-calibration issues. Second, HICO
images were processed using the ENVI Fast-Line-of-Sight Atmospheric Analysis of
Spectral Hypercubes (FLASSH) atmospheric correction programme to retrieve corrected
at-surface reflectances (ENVI 2009). FLASSH serves as a user interface to the radiative
transfer code MODTRAN 4 (Moderate spectral resolution atmospheric TRANsmittance)
(Berk et al. 2000).

Finally, atmospherically corrected at-surface reflectances were retrieved from HICO
images using the dark pixel subtraction approach (Themistocleous et al. 2012; Tufillaro,
Davis, and Jones 2011; Chavez 1988) to remove atmospheric effects.

The dark pixel approach has been successfully applied to HICO images to retrieve
atmospherically corrected radiances from the ocean (e.g. Midway Atoll), coastal (e.g.
Columbia River estuary), and near-shore continental shelf (e.g. Clutha and Broadbay,
New Zealand) environments by Corson (2010) and Tufillaro, Davis, and Jones (2011). In
the dark pixel subtraction approach, atmospheric effects are removed using the at-sensor
radiance for a reference pixel characterized by spectra whose radiances were less ‘bright’
than spectra within the image. These ‘darker’ radiances are subtracted from the total at-
sensor radiances for the image, leaving residual radiances or as in the case for this study
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the estuary water-leaving radiances (Lw (estuary); Figure 5) (Chavez 1988; Goa et al. 2000;
Miller and McKee 2004; Wang et al. 2010; Tufillaro, Davis, and Jones 2011).

LT λð Þ ¼ La λð Þ þ T λð Þ Lw λð Þ½ �: (3)

In the dark pixel model of Tufillaro, Davis, and Jones (2011; Equation (3)), LT(λ) is
the sensor above-water radiance at a wavelength (λ), La accounts for atmospheric and sea-
surface reflection, Τ denotes transmittance from the water surface to sensor, and Lw
represents radiances from below the water surface. The contributions to Lw(λ) can be
decomposed into (Ld(λ) + Lb(λ)), where Ld represents ‘clear water’ or ‘dark pixel’
radiances typical for the region and Lb, which represents radiances from ‘bright water’
within an image.

The premise of the approach begins with imagining, at every pixel, the at-sensor
radiance that would be seen if the water was clear (i.e. an idealized spectrum). The
difference between the idealized spectrum and the signal observed at-sensor provides
information (independent of the atmospheric composition) on the constituents in the water
(Tufillaro, Davis, and Jones 2011). Two basic assumptions with this approach were: (1)
the atmospheric radiances (La) were homogeneous across the scene, such that aerosol size
and type did not change over the distance from the dark pixel to the bright pixels, and (2)
the amount of light in the red portion of the spectrum emanating from the surface waters
of the offshore pixel was negligible. However, previous studies have shown that the
second assumption was not entirely valid in coastal areas and may result in an over-
correction (Palandro 2006; Themistocleous et al. 2012). We applied a correction proce-
dure to account for this problem (see below, Section 3.1).

The atmospherically corrected radiances that resulted from FLASSH and the dark
pixel approach were converted from W m−2nm−1 into µW cm−2nm−1 (Figure 3; Step 5). In
Step 6, the dark pixel corrected Lw values were converted to surface reflectance (ρw)
following the procedure mentioned in Hu et al. (2004):

ρw ¼ π LwðλÞð Þ
F0cosθs

: (4)

Remote-sensing reflectance is defined as Lw/Ed. As previously shown, Lw can be
derived using the dark pixel approach. However, there is no information on the HICO
image header files that allowed for the calculation of Ed. The header file information does
allow for the calculation of t0, F0, and cosθs. The diffuse transmittance term was derived
from Hu et al. (2004):

t0 ¼ exp
�0:5 τr
cos θs

� �
; (5)

τr ¼ 0:0088 λð Þ�4:15þ0:2λ
��

1� exp �0:1188H� 0:011H2
� ��

;

�
(6)

as found in Van Stokkom and Guzzi (1984) and Hansen and Travis (1974).
In Step 7, ρw was converted to remote-sensing reflectance Rrs(0+, λ) sr

−1 from Hu
et al. (2004):
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Rrs 0þ; λð Þ ¼ ρw
ðπ=t0Þ ; (7)

Because FLASSH retrieved surface reflectances during processing, Step 6 was not
applied for conversion of these images. However, FLASSH reflectances were converted to
Rrs values using Equation (7). In Steps 8 and 9, HICO Rrs images were geometrically
corrected using information in the rad_geom file associated with each image and projected
using geographic (spherical) coordinates (degree units) of longitude and latitude using
datum WGS 1984. For this step, the X and Y pixel sizes were initially set to 0.0009°
(approximately 100 m; OSU-HICO 2011). In Step 10, the Image-to-Map Registration
feature of ENVI was used to compare selected landmarks (e.g. bridges, airport runways)
on a HICO image with those viewed on a referenced ArcMap 10 GIS image of the estuary
of interest to identify ground control points (GCPs). After adding at least three GPCs to
the HICO image, ENVI calculated new coordinates for those points and predicted their
associated root-mean-square (RMS) errors. The RMS errors were errors inherent in
finding the exact location of a feature in both HICO scene and reference scene. Points
with high errors were removed and not used in the error analysis.

Each image was also warped and rotated in ENVI using 1st degree RST (rotation,
scaling, and translation) with the nearest neighbour re-sampling method and saved as a
shapefile. In Step 11, the georeferenced and warped Rrs images were imported into the
ENVI Region of Interest (ROI) feature and overlain by GIS shapefiles created in ArcMap
10, which were representative of study estuaries. Using the ENVI ROI Tool the georefer-
enced Rrs values at each pixel in the image were extracted (clipped) and the clipped values
saved as ACSII files for import into EXCEL.

2.5. HICO Chlorophyll a model

Using the dark pixel corrected Rrs data from images of Pensacola Bay (June, August, and
September 2011), optimal spectral bands were identified in the red and NIR wavelengths
to retrieve Chl a concentrations from HICO images using the three-band approach applied
by Dall’Olmo et al. (2005) and Gitelson et al. (2008) to Case 2 waters.

In the approach, the model takes the form of [Rrs(λ1)
−1 – Rrs(λ2)

−1] * Rrs(λ3) where the
reciprocal of Rrs from two wavelengths (λ1, λ2) in the NIR to red spectrum is multiplied by
reflectance of an NIR band (λ3) (Gitelson et al. 2011; Moses et al. 2009; Dall’Olmo,
Gitelson, and Rundquist 2003; Gons 1999; Gower, Doerffer, and Borstad 1999; Gitelson
1992). The approach assumes that (1) CDOM and detrital absorption at λ2 are close to
those at λ1; (2) Rrs(λ3) is influenced by backscatter only, with minimal influence from
water constituent absorption; and (3) backscatter (bb(λ)) is approximately equal to the
three wavelengths (Le et al. 2013; Le et al. 2010). From a bio-optical perspective, the
three-band approach [Rrs(λ1)

−1 – Rrs(λ2)
−1]Rrs(λ3) ≈ [aph(λ1) + aw(λ1) – aw(λ2)]/aw(λ3),

where aph equals phytoplankton absorption and aw equals absorption due to water (Le
et al. 2013, 2009). Wavelength λ1 is the most sensitive to absorption by Chl a. A
second wavelength (λ2), which is located close to λ1, is minimally sensitive to Chl a
absorption and corrects for absorption effects by other optically active constituents and
the third wavelength (λ3) is minimally sensitive to absorption by pigments, mineral
particles, organic detritus, and CDOM (Gitelson et al. 2011; Hunter et al. 2010; Le
et al. 2009).

Gitelson et al. (2008, 2011), Moses et al. (2009) Gitelson, Schalles, and Hladik
(2007), and Dall’Olmo and Gitelson (2006) validated this approach using MERIS and
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MODIS satellite data to estimate Chl a in productive coastal waters with concentrations
between 20 and 40 μg l−1. The approach has also be validated over a wide range of
chlorophyll values (2–50 μg l−1 with an RSME <5.1 μg l−1 and 2–20 μg l−1 with an
RSME <1.7 μg l−1) using a MERIS three-band model by Gitelson et al. (2009).

The optimal spectral bands were determined through an iterative process using Rrs

values from 657 to 749 nm (HICO bands 45–61) using HyperSAS data (660–735 nm)
from five locations sampled during cruises FE1106 (June 2011) in Pensacola Bay and
laboratory-measured Chl a values from those stations. Initially at each station, the position
of λ1 was determined using Rrs values at 703 and 735 nm set as placeholders for λ2 and λ3,
respectively. These values along with Rrs values from 657 ≥ λ1 ≤ 674 nm were input into
the three-band form to predict Chl a concentrations for Bands 45–48. The difference
between measured and predicted Chl a concentrations at each wavelength was derived
and the root-mean-square error (RSME) of Chl a estimation (Gitelson et al. 2008)
determined using Equation (8).

The HyperSAS band with the lowest RMSE in the wavelength range was selected as
the position for λ1. To determine the position of λ2, the location of the previously
determined λ1 and the set position of λ3 (735 nm) were used to again predict Chl a
concentrations from 703 to 730 nm. The difference between predicted and measured
values was derived and RMSE determined. The HyperSAS band in this portion of the
spectrum with the lowest RMSE in the wavelength range was selected as the optimal
position for λ2. Finally, λ3 was determined using Rrs values from the previously deter-
mined wavelengths for λ1 and λ2. Chl a values predicted from Rrs values from 730 to
735 nm were compared with measured Chl a values to derive RSME values. The band
with the lowest RSME in this range was selected as the position for λ3.

RMSE values of the predicted Chl a concentrations were calculated from the follow-
ing equation:

RMSE μg l�1
� � ¼ pðPChlameasured � ChlapredictedÞ2

N � 1;
(8)

The HICO Chl a model was derived using Rrs values from Pensacola Bay images
acquired on 2 June, 26 August, and 9 September 2011 using the optimized wavelengths
derived from the HyperSAS datasets. These values were regressed against in situ chlor-
ophyll a concentrations from stations in Pensacola Bay sampled concurrently with the ISS
overpass to produce a regionally specific algorithm. Comparisons were made between the
measured chlorophyll values and predicted chlorophyll concentrations to identify outliers
and algorithm accuracy. Outliers in the dataset were identified using the quartile method
(NIST/SEMATECH 2012) and removed. The accuracy of the algorithm was determined
from the coefficient of determination, R2, using Model II linear regression analysis (Laws
1997).

2.6. HICO turbidity model

An empirical relationship was derived between in situ turbidity (NTU) from stations in
Pensacola Bay (June 2011) and Rrs at HICO band 43 (Rrs(646)). Turbidity was derived
from HICO images using the approach of Chen, Hu, and Muller-Karger (2007), which
was previously applied to MODIS/Aqua 250 m imagery from the Tampa Bay, FL, estuary.
The accuracy of the turbidity algorithm was assessed by calculating the RMSE of
the predicted turbidity and the measured turbidity from the stations in St Andrews Bay
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during April and June 2010 and in Choctawhatchee Bay using the AED REMUS during
August 2011.

2.7. HICO coloured dissolved organic matter absorption model

The absorption of light due to coloured dissolved organic matter was determined follow-
ing the basic precepts of studies conducted by Bowers et al. (2000, 2004), Binding and
Bowers (2003), and Tiwari and Shanmugam (2011). In this approach, CDOM absorptions
at 412 nm (aCDOM 412) data from Pensacola Bay (June, August, and September 2011)
were regressed against the ratio of waveband reflectance in the red (670 nm) and blue-
green (490 nm) as measured from HICO Rrs from those waters to derive an empirical
algorithm. Error was assessed by calculating the RMSE of the predicted and measured
values from a subset of stations sampled in Pensacola Bay during June and September
2011 and stations sampled in Choctawhatchee Bay during July 2011.

3. Results and discussion

3.1. Image processing: geolocation

Using HICO scenes with obvious landmarks, GCPs were indentified on each image-based
georeferenced ArcMap 10 scenes. Using coordinates from the ArcMap scenes, GCPs (and
their RMS errors) were predicted for each HICO scene. Results indicated that an average
of six ground control points was needed for accurate geolocation. RMS errors ranged from
0.7 to 3.2 m for Choctawhatchee Bay HICO images, from 0.7 to 2.8m for Pensacola Bay
HICO images, from 0.5 to 1.1 m for St Andrews Bay images, and from 0.6 to 1.1 m for St
Joseph’s Bay HICO images. Although the number of GCPs was small, the predicted RMS
errors are well below the 100 m pixel size of HICO images.

3.2. Image processing: Sun glint correction

As stated previously, all images were processed to remove the glint radiance caused by
changing solar/viewing geometries of the HICO sensor. An example of the result of the
Goodman, Lee, and Ustin (2008) approach is shown in Figure 4, which is from a pixel in
an 8 January 2012 HICO image from Choctawhatchee Bay. In this figure, the uncorrected
spectrum shows radiance values well into the NIR, which suggested that the entire
spectrum was affected by Sun glint. After processing, the shape of the corrected radiance
spectrum at that pixel has been preserved, compared to the original spectrum, and radiance
values beyond 750 nm approach zero, which is in agreement with the assumption that
NIR light is strongly absorbed by water and any signals reflected represent Sun glint
reflected from the sea surface.

3.3. Image processing: atmospheric corrections and remote-sensing reflectance

A HICO image of Pensacola Bay acquired on 2 June 2011 was processed using the NRL/
APS programme configured with the standard SeaDAS routines and then using wave-
lengths convolved to MODIS multispectral bands; ENVI FLASSH programme; and dark
pixel subtraction approach for atmospheric correction evaluations. The resulting spectral
signatures were compared with HyperSAS signatures from 21 stations occupied during
the ISS overpass.
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HICO hyperspectral images processed using the NRL/APS in SeaDAS mode and the
ENVI FLASSH atmospheric correction programme did not yield satisfactory results and
did not match any of the classic Case 2 spectra characteristic of the HyperSAS spectra
from Pensacola Bay. HICO spectral signatures produced with the NRL/APS generally
were under-corrected in the blue-green spectrum (Figure 5). The under-correction could
be the result of noise in the NIR portion of the spectrum, polarization sensitivity, and/or
sensor mis-calibration at blue wavelengths (400–450 nm). To help resolve these issues,
vicarious calibration techniques are under development (Lewis et al. 2013). In contrast, all
the MODIS multispectral values agreed very well with the HyperSAS spectra (n = 42;
R2 = 0.89; Figures 5 and 6), indicating that the problems lie with the HICO data and not
with the NRL/APS atmospheric correction approach.

Spectral signatures corrected to remove atmospheric effects with the hyperspectral
module of ENVI FLASSH also did not yield satisfactory results or match the shape of any
HyperSAS spectral signatures (Figure 7). The entire spectrum was either over-corrected in
the blue-green spectrum (e.g. PB18: Redfish Cove) or under-corrected in the red/NIR
region (e.g. PB11: Blackwater Bay). FLAASH is very easy to use, if the user is able to
specify appropriate input parameters that characterize the atmospheric conditions and
illumination geometry at the time of image acquisition (Moses et al. 2012). The input
parameters that describe the atmosphere serve as initial values for an iterative process in
which atmospheric correction occurs. If actual information is not available, the user can
input default values (ENVI 2009).

These problems encountered in this study may be related to errors in the locations of
band centre wavelengths for the HICO sensor when these data are processed using ENVI
FLASSH and problems with the illumination geometry at the time of image acquisition.
The misidentification of band centre positions has been known to introduce significant
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errors into the retrieval of the water signal (ENVI 2009). ENVI FLASSH attempted to
minimize these errors through a utility that automatically identified and corrected wave-
length mis-calibrations using sensor-specific spectrograph definition files. These files are
assigned specific spectral features that are used to correct the wavelength calibrations. For
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Gulf of Mexico (GOM) waters; (b) The residual radiance spectra derived from subtracting the
‘darker spectrum’ of the GOM waters from the ‘brighter’ waters of Pensacola Bay using the dark
pixel subtraction approach. The residual spectrum is the spectrum characteristic of Case 2 waters.
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example, when AVIRIS data are processed, FLASSH used the oxygen feature at
760.17 nm as the reference absorption feature and the CO2 feature at 2058.7 nm as
well as the full-width at half-maximum (FWHM) associated with these features to identify
the bands needed for atmospheric correction. Spectral definition files for AVIRIS,
HYDICE, HYMAP, HYPERION, CASI, and AISA sensors are included as part of the
processing package and when accessed automatically recalibrate wavelength errors for
these sensors. However, files specific to the HICO sensor are not included in this sensor
suite, forcing the use of generic hyperspectral wavelength calibrations included in the
software package or the creation of a sensor spectrograph definition file based on sensor
characteristics.

Moreover, in the header file of each HICO image, the user is cautioned that the image
view and solar view geometries are approximate and do not account for ISS attitude.
These approximations created problems with accurately defining the zenith and azimuth
angles. Because of these complications, ENVI FLAASH was not used to atmospherically
correct HICO images.

In contrast, HICO images processed using the dark pixel subtraction approach yielded
matchups that spectrally corresponded very well with the HyperSAS signatures (Figure 8).
Exceptions to this general observation are seen in the spectra from PB07: Pensacola Bay
and PB24: Pensacola Bay, which are under-corrected in the blue portion of the spectrum.
This approach does not require sensor-specific information for processing and corrects for
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Figure 6. TSS concentrations versus Chl a concentrations (n = 641) in Pensacola Bay, St Andrews
Bay, Choctawhatchee Bay, and St Joseph Bay from October 2009 to September 2011. The low
determination coefficient for linear relationship (R2) indicated TSS and chlorophyll are practically
independent, which is characteristic of Case 2 waters.
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mis-calibration and/or noisy data on a scene-by-scene basis. The correction occurs
because any inherent problems in the deep-water and near-shore spectral sets are removed
through subtraction, leaving only the difference spectra. Thus, this inherent difference
might account for the improved spectral matchups using the dark pixel atmospheric

Figure 7. Examples of HICO (solid line) and MODIS (dotted line) spectral signatures processed
using the NRL automated processing system (APS) from six stations in the Pensacola Bay system
retrieved from the 2 June 2011 HICO image and compared with HyperSAS (dashed line) values.
Please note these signatures were not corrected for seabed reflectance
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correction method, compared to the matchups produced using the APS and FLAASH
approaches.

Sensor-specific information is not required for this type of atmospheric correction
because removing the contribution of atmospheric backscattering from the at-sensor
radiance curve is not dependent on the precise location of spectral channels for water
vapour and absorption features. Spectrally, the at-sensor radiance curves of image pixels
reflected the shape of the solar irradiance curve with atmospheric Rayleigh scattering and
fell off roughly as λ−4. ‘Dark pixels’ are assumed to not scatter photons as much as land or
‘brighter’ waters with sediments. It was also assumed that by subtracting the at-sensor
‘dark pixel’ radiance from the at-sensor spectra of ‘bright’ pixels, the spectra produced
had Rayleigh scattering effects removed and contained primarily photons scattered from
the constituents within the water column (Figure 9). This approach was selected as the
method for atmospherically correcting the remaining HICO images. However, with the
dark pixel subtraction approach, there was a concern as demonstrated in previous studies –
the subtraction process could create an over-correction, which results in negative Rrs

values in the blue portion of the spectrum (Moses et al. 2009; Palandro 2006). To address
this issue, an offset (avg 0.003 sr−1) determined by Rrs values at 450 nm was applied to the
spectra to adjust reflectance values so as to yield positive values in the blue portion of the
spectrum (Hu et al. 2004).

3.4. Algorithm development and tuning for estimating chlorophyll a

In general, the waters sampled had Chl a concentrations, total suspended sediment (TSS)
concentrations, and turbidity values that varied by more than a factor of 10 (Table 2). TSS

R2 = 0.89
n = 42
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Figure 8. MODIS Rrs derived from NRL/APS compared to HyperSAS Rrs.
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Figure 9. Examples of spectral signatures processed using ENVI FLASSH from six stations in the
Pensacola Bay system retrieved from the 2 June 2011 HICO (solid line) image and those collected
using HyperSAS (dashed line). Note that these signatures were not corrected for seabed reflectance.

Table 2. Descriptive statistics for optical water-quality parameters for Pensacola, Choctawhatchee,
St Andrews, and St Joseph Bays from October 2009 to September 2011.

N Min Max Median Mean STD

Chl a μg l−1 640 0.07 28.04 4.40 5.41 3.94
TSS mg l−1 640 0.00 22.65 2.80 3.58 2.95
Turbidity NTU 46 0.13 4.75 0.85 1.08 0.83
aCDOM(412) m−1 715 0.13 17.20 1.41 2.28 2.42

Notes: N, number of samples; aCDOM(412), CDOM absorption at 412 nm; STD, standard deviation of
measurements.
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concentrations correlated weakly with Chl a measurements (Figure 10), confirming that
the waterbodies sampled during this study belong to Case 2 waters (Morel and Prieur
1977). This suggested that algorithms commonly used for estimating Chl a concentrations
in Case 1 ocean waters (e.g. O’Reilly et al. 1998) are inadequate for accurate estimations
in these Case 2 waters.

Using an optimization procedure, a three-band empirical model was developed using
HyperSAS spectral data and laboratory-extracted Chl a concentrations from Pensacola
Bay (June, August, and September 2011) to estimate Chl a concentrations from the HICO
images.
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Figure 10. Examples of spectral signatures processed using the dark pixel subtraction approach
from six stations in the Pensacola Bay system retrieved from the 2 June 2011 HICO (solid line)
image and those collected using HyperSAS (dashed line). Note that these signatures were not
corrected for seabed reflectance.
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The optimal position of λ2 was derived by setting λ1 and λ3 at 660 and 735 nm,
respectively, with the minimal RMSE (0.002 μg l–1) occurring at 703 nm (Figure 11, solid
line). To determine the optimal position of λ1, λ2 was set at 703 nm and λ3 was set at
735 nm. Using this combination, the minimum RMSE (0.006) was located at 686 nm
(Figure 11, dashed line). To determine λ3, the 686 and 703 nm bands were selected for λ1
and λ2, respectively, with the minimal RMSE (0.217) occurring at 735 nm (Figure 11,
dotted line).

With the optimal bands identified, spectral values at 686 (HICO band 50), 703 (HICO
band 53), and 735 nm (HICO band 58) from HICO images were used to derive the ratio
values that were proportional to Chl a concentration (Gitelson et al. 2011; Hunter et al.
2010; Le et al. 2009; Dall’Olmo and Gitelson 2006). These values were regressed against
in situ Chl a concentrations from a total of 17 stations in Pensacola Bay sampled during
June, August, and September 2011 to produce a regionally specific algorithm (Figure 12
(a), Tables 3 and 4). The algorithm was validated using measured in situ Chl a samples
collected from April 2010 to September 2011 at 21 stations in St Andrews Bay, Pensacola
Bay, and Choctawhatchee Bay (Figure 12(b), Table 5).

The algorithm was applied to HICO images from the four estuaries, beginning in April
2010 and ending in May 2012, to map spatial and temporal changes in Chl a distribution
during the period. Figure 15(a) represents the chlorophyll distribution within
Choctawhatchee Bay from a HICO image acquired during fall 2011. This image shows
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a latitudinal gradation in Chl a with higher values in the western bay near the tidal
inlet connection to the Gulf of Mexico and lower Chl a in the east near the entrance
to the Choctawhatchee River (Figure 1). At smaller spatial scales, the high pixel
resolution of HICO also captured the Chl a distribution in the surrounding, smaller
embayments.
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Figure 12. (a) Scatterplot of measured Chl a versus the three-band model values using Rrs values
from HICO images acquired on 2 June, 26 August, and 9 September 2011 and estimates of extracted
or fluorometer-derived Chl a from 17 stations sampled in Pensacola Bay; (b) Scatterplot of
measured Chl a values versus HICO Chl a from St Andrews Bay (14 April 2010), Pensacola Bay
(2 June 2011 and 9 September 2011), and Choctawhatchee Bay (24 August 2011).
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It is well known that estuaries are highly dynamic interfaces where phytoplankton
dynamics can change over tidal cycles. To observe Chl a variability associated with
sampling at different times relative to an ISS overpass, we examined the goodness-of-fit
between measured and predicted Chl a values as a function of time after an ISS
overpass. Chl a samples collected within four hours of an overpass were assessed
from stations in Pensacola Bay, Choctawhatchee Bay, and St Andrews Bay sampled
during April 2010 and June to August 2011. A strong relationship (R2 = 0.62, p <
0.001, RMSE = 1.7 μg l–1) existed for stations (n = 21) occupied 0–4 hours of an
overpass (Figure 12(b), Table 5).

Chl a values were also derived using the OC3 SeaDAS algorithm with HICO data
(processed through NRL/APS). These estimates were compared with NRL glider chlor-
ophyll values collected on 28 October 2011 along the inner continental shelf waters off

Table 3. Descriptive statistics of samples (n = 17) used in deriving the three-band HICO chloro-
phyll model.

Chl a Min Max Median Mean STD
Date Station (measured) (μg l−1) (μg l−1) (μg l−1) (μg l−1) (μg l−1)

2 June 2011 PB04 5.5 2.5 7.6 5.2 4.8 1.6
2 June 2011 PB05 3.0
2 June 2011 PB07 2.9
2 June 2011 PB08 6.5
2 June 2011 PB12 5.0
2 June 2011 PB13 3.2
2 June 2011 PB14 3.2
2 June 2011 PB17 3.0
2 June 2011 PB18 2.5
26 August 2011 PB04 6.8
26 August 2011 PB05 6.0
26 August 2011 PB06 5.2
26 August 2011 PB07 5.6
26 August 2011 PB08 4.8
26 August 2011 PB06 5.6
9 September 2011 PB07 7.6
9 September 2011 PB09 5.8

Note: PB, Pensacola Bay; STD, standard deviation of chlorophyll concentrations.

Table 4. Algorithms derived to map the distribution of water-quality indicators derived from
atmospherically corrected remotely sensed reflectances (Rrs). Also shown are the units of measure-
ment; the slope (m) and goodness-of-fit (R2) of the relationship between measured and predicted
values; the number of values used (n) to derive the algorithm; and the root-mean-square error
(RMSE) of the measurements.

Indicator Model m R2 n RMSE

Chl a (μg l−1) 17.477 × [a] + 6.152 a
= [1/Rrs(686) – 1/Rrs(703)] × Rrs(735)

1.40 0.62 21 1.7

Turbidity (NTU) 2 × 106 × [Rrs(646)
2.7848] 1.21 0.67 19 0.6

aCDOM412) (m
−1) 0.8426 × [Rrs(670)/Rrs(490)] – 0.032 0.90 0.93 18 0.2

International Journal of Remote Sensing 2949

D
ow

nl
oa

de
d 

by
 [

N
av

al
 R

es
ea

rc
h 

L
ab

or
at

or
y 

R
es

ea
rc

h 
L

ib
ra

ry
] 

at
 1

1:
54

 2
8 

M
ar

ch
 2

01
4 



Pensacola Bay. The OC3 values were generally higher than the glider values and
approximately constant at 1.3 μg l−1 with very low variability (data not shown).

A unique opportunity occurred on 28 October 2011 when a clear MODIS scene was
acquired within 7 min before the HICO overpass. Using the NRL/APS, the OC3 algo-
rithm Chl a and standard SeaDAS atmospheric correction were applied to both HICO
image and MODIS scene (Figure 13(a)). During processing, the 1 km MODIS image was
re-sampled to the 100 m HICO pixel size and the HICO image was georeferenced to the
‘new’ MODIS image. A region-of-interest (ROI) was generated near the mouth of
Pensacola Bay and all MODIS and HICO chlorophyll values within that ROI were
extracted from the two scenes. During the re-sampling process on the MODIS scene,
pixels were simply replicated to increase the resolution from 1 km to 100 m. For example,
if a 1 km MODIS pixel had a value of 1 µg l−1 then there are now 100 pixels with that
same value for the comparison to HICO. Results showed there was agreement between the
HICO and MODIS OC3 Chl a values than between the HICO and glider values
(m = 0.38; intercept = 0.81; R2 = 0.85; Figure 13(b)). The high R2 value indicated there
is a strong linear relationship between the two variables (i.e. the proportion of the variance
in the HICO Chl a values is accounted for by the MODIS Chl a values). However, the
non-zero intercept and the bias (slope not equal to 1) indicated that the MODIS and HICO
values are not necessarily close to each other. For example, HICO values were somewhat
higher than MODIS values at Chl a concentrations below 1.2 µg l−1, and lower than
MODIS at concentrations above 1.2 µg l–1. The significant regression of OC3 results from
HICO and MODIS retrieved by the NRL/APS indicated that other algorithms in the
SeaDAS processing package could be applied to leverage the high spatial resolution

Table 5. Descriptive statistics of samples (n = 21) used to validate the three-band HICO chlor-
ophyll model.

Chl a Min Max Median Mean STD
Date Station (measured) (μg l−1) (μg l−1) (μg l−1) (μg l−1) (μg l−1)

14 April 2010 SA02 7.7 2.8 9.2 3.6 5.1 2.2
14 April 2010 SA08 9.2
2 June 2011 PB06 3.0
2 June 2011 PB11 5.7
2 June 2011 PB19 3.1
2 June 2011 PB20 3.3
2 June 2011 PB21 2.8
2 June 2011 PB22 3.4
2 June 2011 PB23 6.7
2 June 2011 PB24 3.5
30 July 2011 CH01 3.1
30 July 2011 CH02 3.6
30 July 2011 CH03 3.6
30 July 2011 CH05 4.0
30 July 2011 CH06 3.6
30 July 2011 CH07 3.6
24 August 2011 CH07 6.0
9 September 2011 PB02 7.8
9 September 2011 PB03 8.0
9 September 2011 PB04 8.5
9 September 2011 PB05 6.6

Note: SA, St Andrews Bay; PB, Pensacola Bay; CH, Choctawhatchee Bay; STD, standard deviation of
chlorophyll concentrations.
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capability of HICO relative to 1 km MODIS data if the appropriate atmospheric correc-
tions could be implemented.

3.5. Turbidity and CDOM models

Turbidity is a fundamental indicator of water clarity that is a measure of the ability of
suspended material to diminish the penetration of light in aquatic systems (AGI 1974).

(b)

R2= 0.85
m = 0.38
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Figure 13. (a) HICO and MODIS Chl a concentrations (processed through NRL/APS using the
OC3 Chl a algorithm) on 28 October 2011, offshore of Pensacola Bay. The red rectangle overlaid on
the MODIS image from 1900 GMT represents the location of a coincident HICO scene from the
same day at 1907 GMT. The blue rectangle indicates the pixels included in the matchup comparison.
(b) HICO Chl a concentrations versus MODIS Chl a values on 28 October 2011, offshore of
Pensacola Bay; the dashed line corresponds to the 1:1 line.
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Variations in turbidity help trace the distribution of total suspended sediments, which are
affected by geological processes (e.g. coastal erosion) and the mobilization of pollutants
(Zhang et al. 2011; Heyes, Miller, and Mason 2004). Turbidity can vary widely spatially
and temporally in coastal and estuarine waters. This variability results in the failure of
conventional sampling methods to accurately characterize turbidity dynamics because of
limitations in temporal and spatial sampling schemes. We empirically derived a water
clarity algorithm (Table 4) by regressing in situ turbidity measured from 18 stations in
Pensacola Bay on 2 June 2011 against Rrs retrieved at 646 nm from a HICO image
acquired on that day (Table 6). In the approach, Rrs is assumed to be proportional to
backscatter (bb), which is equivalent to turbidity for medium to low turbid waters (Chen,
Hu, and Muller-Karger 2007). Figure 13(a) shows that HICO Rrs(646), which ranged
from 0.003 to 0.009 sr−1, was closely related (R2 = 0.72) with in situ turbidity values
from 0.10 to 10 NTU (Figure 14(a)). The model was validated using in situ turbidity
measurements from 14 stations in St Andrews Bay (from April and June 2010) and the
REMUS AUV from two locations along a track in Choctawhatchee Bay on August 2011
(Table 7). Chen, Hu, and Muller-Karger (2007) suggested that the approach should be
applicable to other estuaries where CDOM contribution is negligible at the 646 nm
wavelength. This observation was confirmed as results showed a strong relationship
(R2 = 0.67; p < 0.001; RMSE = 0.56 NTU) between measured and predicted values
(Figure 14(b)). This relationship was consistent with turbidity values from Tampa Bay,
FL. An example image from St Andrews Bay acquired during spring 2011 is provided in
Figure 15(b). St Andrews Bay generally has turbidity values from 0.2 to 2.3 NTU.
Higher turbidity (2.4–12.9 NTU) was observed in isolated areas usually associated
where streams enter embayments and along the tidal inlet.

Table 6. Descriptive statistics of samples (n = 18) used in deriving the HICO Turbidity model.

Turbidity Min Max Median Mean STD
Date Station (measured) (NTU) (NTU) (NTU) (NTU) (NTU)

2 June 2011 PB03 4.75 0.55 4.75 1.02 1.36 0.99
2 June 2011 PB04 1.78
2 June 2011 PB05 0.99
2 June 2011 PB06 1.71
2 June 2011 PB07 0.55
2 June 2011 PB08 0.85
2 June 2011 PB11 1.56
2 June 2011 PB12 0.94
2 June 2011 PB13 1.03
2 June 2011 PB14 0.75
2 June 2011 PB15 1.60
2 June 2011 PB16 1.02
2 June 2011 PB17 0.65
2 June 2011 PB18 1.11
2 June 2011 PB19 0.85
2 June 2011 PB20 0.86
2 June 2011 PB21 1.24
2 June 2011 PB22 2.90
2 June 2011 PB23 0.69

Note: PB, Pensacola Bay; STD, standard deviation of turbidity measurements.
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Figure 14. (a) Scatterplot of turbidity measured from CTD casts at stations in Pensacola Bay
during 2 June 2011 and remotely sensed reflectance at 646 nm from the HICO image acquired on
that day, (b) scatterplot of measured and predicted turbidities using in situ measurements from 12
stations in St Andrews Bay from April and June 2010 and the REMUS AUV from two locations
(30.440N – 86.300 W and 30.439N – 86.304W) along a trackline in Choctawhatchee Bay on August
2011, and (c) scatterplot of CDOM light absorption at 412 nm measured during CTD casts from
stations in the Pensacola Bay system during 11 June, 11 August, and 11 September 2011 versus
CDOM light absorption at 412 nm predicted from HICO images acquired on those days.

International Journal of Remote Sensing 2953

D
ow

nl
oa

de
d 

by
 [

N
av

al
 R

es
ea

rc
h 

L
ab

or
at

or
y 

R
es

ea
rc

h 
L

ib
ra

ry
] 

at
 1

1:
54

 2
8 

M
ar

ch
 2

01
4 



Several studies have shown that CDOM primarily absorbs light in the UV and visible
spectral range and plays a key role in controlling light attenuation and spectral quality in
Atlantic and Gulf of Mexico estuaries (Keith, Yoder, and Freeman 2002; Chen et al. 2007;
Tehrani et al. 2013). CDOM, the coloured fraction of dissolved organic matter (DOC), can
be estimated by ocean sensors and can be utilized to estimate the standing stock of DOC
and the carbon cycle in aquatic environments (Coble 2007). Monitoring the distribution of
CDOM at several spatial and temporal scales could provide diagnostic information on the
natural and anthropogenic factors affecting the capacity of these waters to provide
sufficient sunlight to planktonic and macrophytic vegetation for photosynthesis and
growth. Previously, D’Sa, Miller, and Del Castillo (2006) used in situ aCDOM(412) mea-
surements, collected with 14 hours of an overflight, and the ratio of Rrs(510) and Rrs(555)
from SeaWiFS to derive an algorithm that mapped the surface values of CDOM absorp-
tion in the offshore waters of the northern Gulf of Mexico. Statistical analysis revealed the
algorithm performed well with an R2 of 0.66 and an RSME of 0.23 m−1.

We empirically derived an algorithm to study CDOM distribution within estuarine
waters of the Gulf coast (Table 4). The algorithm was derived by regressing in situ CDOM
absorption measurements (aCDOM(412)), collected within five hours of an ISS overflight, at
17 stations in Pensacola Bay from June to September 2011 against the ratio of Rrs

retrieved from 670 and 490 nm from HICO images acquired on those days (Table 8).
This approach assumes that in order to retrieve CDOM remotely there is a robust
relationship between the red/blue-green spectral ratio and the absorption of CDOM. The
algorithm was validated using measured CDOM absorption values, also collected within
six hours of an ISS overflight, from 18 stations in Pensacola and Choctawhatchee Bays (2
June, 30 July, and 9 September 2011; Table 9) and HICO images from those days. During
this time period, aCDOM412) varied spatially and temporally from 0.6 to 3.1 m−1. A
comparison of the measured versus predicted absorption values showed an excellent
relationship (R2 = 0.93, p < 0.001; Figure 14(c)) and an RMSE of 0.21 m−1. Figure 15
(c) provides an example of the CDOM distribution in Pensacola Bay acquired during 16

Table 7. Descriptive statistics of samples (n = 14) used to validate the HICO turbidity model.

Turbidity Min Max Median Mean STD
Date Station (measured) (NTU) (NTU) (NTU) (NTU) (NTU)

14 April 2010 SA04 0.85 0.28 1.92 0.83 0.94 0.47
14 April 2010 SA05 0.38
14 April 2010 SA07 0.65
14 April 2010 SA08 0.58
14 April 2010 SA10 1.09
14 April 2010 SA11 1.92
17 June 2010 SA02 1.22
17 June 2010 SA04 0.81
17 June 2010 SA05 0.51
17 June 2010 SA08 0.28
17 June 2010 SA10 0.78
17 June 2010 SA11 0.75
24 August 2011 CH-AUV 1.45
24 August 2011 CH-AUV 1.43

Note: SA, St Andrews Bay; CH-AUV, Choctawhatchee Bay REMUS data; STD, standard deviation of turbidity
measurements.
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Figure 15. Example images of water-quality indicators derived from HICO atmospherically
corrected data using the dark pixel subtraction approach: (a) Chl a distribution (Choctawhatchee
Bay, 31 October 2011), (b) turbidity distribution (St Andrews Bay, 19 March 2011), and (c) CDOM
distribution (Pensacola Bay, 16 January 2012).
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Table 8. Descriptive statistics of samples (n = 17) used in deriving the HICO CDOM absorption
model.

aCDOM(412) Min Max Median Mean STD
Date Station (measured) (m−1) (m−1) (m−1) (m−1) (m−1)

2 June 2011 PB04 1.08 0.63 2.03 1.08 1.19 0.43
2 June 2011 PB05 0.77
2 June 2011 PB07 0.63
2 June 2011 PB12 1.04
2 June 2011 PB13 0.81
2 June 2011 PB14 0.83
26 August 2011 PB03 1.80
26 August 2011 PB04 1.60
26 August 2011 PB05 1.62
26 August 2011 PB06 1.17
26 August 2011 PB07 1.18
26 August 2011 PB08 1.02
26 August 2011 PB09 0.78
9 September 2011 PB06 1.71
9 September 2011 PB07 2.03
9 September 2011 PB08 1.41
9 September 2011 PB09 0.72

Note: aCDOM(412), CDOM absorption at 412 nm; PB, Pensacola Bay; STD, Standard deviation of CDOM
absorption measurements.

Table 9. Descriptive statistics of samples (n = 18) used to validate the HICO CDOM absorption
model.

aCDOM(412) Min Max Median Mean STD
Date Station (measured) (m−1) (m−1) (m−1) (m−1) (m−1)

2 June 2011 PB03 1.08 0.57 3.12 1.48 1.52 0.73
2 June 2011 PB06 0.75
2 June 2011 PB08 0.57
2 June 2011 PB09 0.74
2 June 2011 PB15 0.66
30 July 2011 CH01 0.89
30 July 2011 CH02 1.14
30 July 2011 CH03 1.65
30 July 2011 CH04 1.02
30 July 2011 CH05 1.41
30 July 2011 CH06 1.54
30 July 2011 CH07 1.59
30 July 2011 CH08 2.49
30 July 2011 CH09 1.96
9 September 2011 PB02 3.12
9 September 2011 PB03 2.44
9 September 2011 PB04 2.31
9 September 2011 PB05 1.80

Note: aCDOM(412), CDOM absorption at 412 nm; PB, Pensacola Bay; CH, Choctawhatchee Bay; STD, standard
deviation of CDOM absorption measurements.
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January 2012 (Figure 15(c)). This image showed the highest CDOM absorption (1.7–4.3
m−1) in the vicinities of PB2 and PB3 in the upper parts of the Pensacola Bay system and
PB12 and PB16 in eastern Pensacola Bay (Figures 2 and 15(c)). The most intense
absorption was located in the vicinity of PB07, PB08, PB24, PB25, and PB26 in lower
Pensacola Bay (Figures 2 and 15(c)).

4. Conclusions

HICO hyperspectral data were acquired from the surface waters of four Florida estuaries
during overflights of ISS. Several water-quality algorithms were derived to estimate the
indicators of ecological condition. The ~6 nm spectral resolution and ~95 m spatial
resolution of HICO acquired images made this sensor unique among the previous and
current ocean colour satellites. These attributes not only make HICO a unique tool for
algorithm development in coastal waters, but also could provide future value for the
monitoring and management of the nation’s coasts in optically complex waters and areas
below the spatial resolution of previous sensors. In our study, we found that the dark pixel
atmospheric correction method worked very well in removing atmospheric effects from
HICO images. Using atmospherically corrected HICO Rrs values and in situ and labora-
tory data from an extensive field sampling programme in the study estuaries, algorithms
were created, and tested, which successfully estimated chlorophyll concentrations, light
absorption due to CDOM, and water clarity as expressed by turbidity.

Although the potential benefits are many, there are several issues that must be resolved
before HICO images and data can be incorporated into routine monitoring programmes to
benefit decisions made by coastal managers. We suggest that HICO vicarious calibration
and standardized atmospheric correction issues must be resolved, and work is under way
on these (Lewis et al. 2013). During our analysis, we observed that multiple images of the
same target did not cover identical spatial coordinates and resulted in spatial off-
sets >10 km. This issue may result from the differences between the actual and predicted
ISS ephemeris data, which impacts the times HICO is actually operating. The predicted
ISS orbit is used to program when to activate HICO and if the actual orbit differs slightly,
at the time of data collection, the location of the targeted image might be off slightly.
Images of the same area were acquired at different times of the day and at different solar
zenith/azimuth and view zenith/azimuth angles due to the ISS orbit, which is not Sun-
synchronous. ISS altitude adjustments resulted in changes in spatial resolution and cover-
age of the target area as scenes were collected at different altitudes owing to changes in
the orbit of the ISS (i.e. predicted vs. actual orbit). We recognize that this problem was
inherent with sensors flown on the low orbiting ISS. However, this may be beneficial
when testing algorithm performance for geostationary satellites, since these satellites
measure at different times of the day and under different viewing geometries in relation
to the Sun. The ISS orbits the Earth 16 times per day, and HICO is currently limited to the
acquisition of one image per orbit due to a combination of the time it takes HICO to
complete an image and data downlink speeds from the ISS. In addition, during this study,
several logistical conflicts with supply module dockings and general ISS operations led to
rescheduling of planned image acquisitions and complications (e.g. logistical difficulties
associated with scheduling field data collections at the time of an ISS overpass) because
uncertain ISS ephemeris data beyond a two week time window made predicting the orbital
path of the ISS (and image targeting) difficult more than two weeks into the future.

Additionally, HICO target overpass information was communicated only hours-to-
days in advance based on a predictive model that incorporated ephemeris (orbit) and
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predicted mean altitude parameters. Variations in ephemeris and oscillations in altitude
made reliable estimates for ISS overpasses difficult. The uncertainty associated with
overpass predictions negatively impacted the potential to effectively deploy field crews
to implement sampling protocols in an efficient and timely manner.

Because satellite-based, hyperspectral data have been rarely available for scientific
investigations, HICO has the potential to be a valuable monitoring tool owing to its high
spectral and spatial resolutions and the corresponding ability to obtain spectral data near
the land–water interface where water-quality managers continue to focus and humans may
have the high probability of interacting with the aquatic environment. However, for HICO
to transition from a proof-of-concept project to full application, the sensor needs to be
placed into a polar orbit configuration to provide a stable well-characterized platform for
greater spatial and temporal coverage and geometric fidelity. Furthermore, a polar orbiting
platform would be highly predictable, allowing image synchronization with any field
validation effort. This observation is consistent with the planning of NASA and other
agencies to launch several ocean colour missions (e.g. GEO-CAPE, ACE, HyspIRI) with
hyperspectral capacity in the future (NRC 2007).
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